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Abstract
In a recent paper (Aldaya V and Guerrero J 2005 J. Phys. A: Math. Gen. 38
6939) it is shown that the bound states of the Modified Pöschl–Teller potential
should be described by the non-compact dynamical group SU(1, 1) instead
of the usual compact group SU(2). Here we prove that SU(2) cannot be the
dynamical group for a potential with a finite number of bound states on the
basis of the Modified Pöschl–Teller potential and the Morse potential. This
suggests that a quantum system with a continuum spectrum and a finite number
of bound states should be described, both in the continuum and the discrete
spectrum, by a non-compact dynamical group instead of a compact one.

PACS number: 03.65.Fd

1. Introduction

Recently, the authors have shown [1] that the bound states of the Modified Pöschl–Teller
(MPT) potential should be described by the dynamical group SU(1, 1) ≈ SL(2, R) instead
of SU(2), as is customarily presented in the literature [4, 5] (see also [6] and references
therein for a recent account). The key point has been a deep analysis of the unitarity of the
representation under which the eigenstates of the Hamiltonian transform. In fact, unitary
irreducible representations of SU(2) require 2j + 1 normalizable states, with j integer or
half-integer, but the Hilbert space of (normalizable) bound states for the MPT potential is
spanned by only [j ] + 1 states, where [j ] stands for the greatest integer strictly smaller than
j , and j is related to the potential parameters. That is, not only there are fewer states in the
true representation space than in the case of SU(2), but also the parameter characterizing the
representations can take any positive value.
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These features cannot be accomplished by the representations of a compact group as
SU(2), since it is simply connected (therefore we cannot resort to the universal covering
group to obtain more allowed values of j ), and the only irreducible representations correspond
to integer and half-integer j , and these are unitary. Furthermore, there is no well-defined
action of SU(2) on a one-dimensional space; it only acts on the sphere S2, with the spherical
harmonics spanning the Hilbert space, or the complex plane (via stereographic projection from
the Riemann sphere), with a carrier Hilbert space of holomorphic functions.

In spite of this, in the literature it is commonly stated that SU(2) is the dynamical group
for the bound states of the MPT potential, and that a similar situation occurs for other one-
dimensional potentials like the Morse potential [5, 7] (see also [8] and references therein).
In general, it is assumed that the dynamical group associated with a finite number of bound
states must be compact [5]. Also, the explicit construction of the MPT and Morse energy
eigenstates in terms of SU(2) wavefunctions has been done [5]. According to the previous
discussion, and as was proved in [1], the dynamical group for the bound states of the MPT
potential is non-compact (there, it was also suggested that a similar situation occurs for the
Morse potential). Therefore, there exists a clear contradiction between our results and those
in the literature.

In this paper, we show that the construction on SU(2) grounds is not correct and fails due to
the lack of unitarity. The key point is that even though the MPT and Morse eigenfunctions can
be described in terms of (a piece of) SU(2) wavefunctions (associated Legendre functions for
the MPT potential and associated Laguerre polynomials for the Morse potential, respectively)
by means of appropriate changes of variables, the integration measures obtained through these
changes do not coincide with the invariant integration measures for SU(2) in the respective
spaces. As a consequence, not all states are normalizable with respect to the new integration
measure, so that only [j ]+1 out of the 2j +1 states are normalizable. Accordingly, these states
cannot span an irreducible representation of SU(2). In [1], we proved that they indeed build
a new kind of ‘unitary’, non-local realization of a finite-dimensional, non-unitary, irreducible
representation of SL(2, R) for the case of the MPT potential, and it was conjectured that this
is also the case of the Morse potential.

It is interesting to note that the claim that the dynamical group for the bound states of the
Morse potential is SU(2) is based on [9], where the algebra satisfied by the ladder operators
corresponding to an F-type factorization (see [10]) of the Morse Hamiltonian derived in [11],
after the introduction of an extra variable, in order to avoid the appearance of the quantum
number n in the factorization, is done. But, in [9], it is recognized that although the algebra has
as commutation relations those of SO(3), the ladder operators are not adjoint to each other.
This clearly indicates that SO(3) (or SU(2)) cannot be the dynamical group for the bound
states of the Morse potential.

Our statement that SU(1, 1) is the dynamical group for the bound states of the MPT
potential, realizing a non-unitary, finite-dimensional representation of SU(1, 1), differs from
(and does not contradict) others in the literature. In fact, in [5, 12], the group SU(1, 1)

appears as the dynamical group for the scattering states of the MPT potential, realized through
the continuos series of representations. Also, in [9, 12], the same group is shown to be the
potential group for the bound states of the MPT potential, in the sense that the ladder operators
in a certain realization of the discrete series representations of SU(1, 1) shift the potential
depth, keeping the energy fixed (see also [13] for a description in terms of the coupling of two
SU(1, 1) representations in the framework of a larger potential group Sp(2N, R)). Finally,
in the case of the trigonometric Pöschl–Teller potential, having an infinite number of bound
states and no scattering states, SU(1, 1) plays the role of the dynamical group realized in the
discrete series representations (see [14] for a recent account).
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The paper is organized as follows. In section 2, we review the representations of SU(2)

on the sphere in terms of spherical harmonics, which factorize as the product of a phase and an
associated Legendre function, and it is shown that these representations cannot be expressed
in terms of just associated Legendre functions. In section 3, the representations of SU(2) are
constructed on the plane in terms of two boson operators (Schwinger representation), where
the wavefunctions are expressed as the product of a phase and a radial part containing an
associated Laguerre polynomial, and we prove that these representations cannot be expressed
in terms of just the radial part. In sections 4 and 5, these results are applied to show that SU(2)

cannot be the dynamical group for the bound states of the MPT nor the Morse potential,
respectively.

All formulae concerning properties of the associated Legendre functions and the
associated Laguerre polynomials appearing in this letter are standard and can be seen, for
instance, in [15, 16].

2. Representations of SU (2) on the sphere: associated Legendre functions

The most familiar realization of the representations of SU(2) takes place on the sphere S2 in
terms of spherical harmonics (for integer values of spin). In this case, the sphere lays in the
physical space, i.e. it is obtained by changing from Cartesian coordinates (x, y, z) to spherical
ones (r, θ, φ), r > 0, 0 � θ � π, 0 � φ < 2π , and taking r = 1. The Casimir and the third
component of the angular momentum operators �J = −i�r × �∇ are written as:

J 2 = − 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− 1

sin2 θ

∂2

∂φ2
, J3 = −i

∂

∂φ
. (1)

A given representation is characterized by the index j , and a basis
{
Ym

j (θ, φ)
}j

m=−j

for the Hilbert space is determined by the eigenvalue equations J 2Ym
j = j (j + 1)Ym

j and
J3Y

m
j = mYm

j , whose solutions are the well-known spherical harmonics. They are written as

Ym
j (θ, φ) =

√
(2j + 1)

4π

(j − m)!

(j + m)!
P m

j (cos θ) eimφ, m = −j,−j + 1, . . . , j − 1, j, (2)

where P m
j (cos θ) are the associated Legendre functions4 satisfying the differential equation

(x = cos θ): [
(1 − x2)

d2

dx2
− 2x

d

dx
+ j (j + 1) − m2

1 − x2

]
P m

j (x) = 0. (3)

Spherical harmonics are normalized with respect to the natural integration measure (area)
on the sphere, dµ = sin θ dθ dφ. They are also orthogonal:∫

S2
dµYm∗

j (θ, φ)Ym′
j ′ (θ, φ) = δjj ′δmm′ . (4)

At this point it should be stressed that all these relations are valid as far as j is integer.
Therefore, spherical harmonics provide just (true) representations for SO(3). For j half-odd-
integer other realizations, using spinors or holomorphic functions on the complex plane, are
required.

The orthogonality relation (4) is more general than the usual orthogonality of a basis
of functions

{
Ym

j (θ, φ)
}

for a given representation j , and this is due to the eimφ part of

4 Associated Legendre functions P m
j (x) for integers j and m are also named associated Legendre polynomials since

P m
j (cos θ) is a polynomial in cos θ and sin θ .
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the functions. It further expresses an orthogonality between arbitrary functions belonging
to different representations (as happens for the unitary representations of finite groups,
consequence of the Peter–Weyl theorem) and stating that the set of spherical harmonics
is an orthonormal basis for the Hilbert space L2(S2). This is provided by the following
orthogonality relation of the associated Legendre functions:∫ π

0
P m

j (cos θ)P m
j ′ (cos θ) sin θ dθ = 2

2j + 1

(j + m)!

(j − m)!
δjj ′ . (5)

Note that the measure used for this orthogonality relation is the one obtained by reduction
from the integration measure dµ on the sphere.

Under conjugation, the spherical harmonics transform as

Ym∗
j (θ, φ) = (−1)mY−m

j (θ, φ), (6)

and this property is inherited from the following property of the associated Legendre functions
(here it is crucial that j and m are integers):

P −m
j (x) = (−1)m

(j − m)!

(j + m)!
P m

j (x), m = −j,−j + 1, . . . , j. (7)

This last property implies that, for each integer j , only j + 1,
{
P m

j (x)
}0

m=−j
, out of the 2j + 1

(well-defined) associated Legendre functions are linearly independent (note that equation (6)
does not imply this dependence for spherical harmonics).

Therefore, the unitary representations of SU(2) (or rather SO(3)) on the sphere in terms
of spherical harmonics cannot be reduced to a representation on a half-circle, θ , 0 � θ � π ,
in terms of just the associated Legendre functions, since these are linearly dependent.

Another pathology of this realization on a half-circle is that, with the measure induced by
the reduction, the associated Legendre functions are not orthogonal for fixed j and different
values of m (equation (5) only implies that they are orthogonal for the same m and different
values of j ). Therefore, they definitely cannot carry a unitary irreducible representation of
SU(2) of dimension 2j + 1, since the operator J3 would not be self-adjoint.

However, modifying the scalar product, they can be made orthogonal with respect to m:∫ π

0
P m

j (cos θ)P m′
j (cos θ)

dθ

sin θ
= 1

m

(j + m)!

(j − m)!
δmm′ , (8)

although at the price that the polynomial P 0
j (cos θ) is not normalizable. This situation,

nevertheless, is not better than the previous one, since now there are only j independent and
normalizable functions. The measure dθ

sin θ
does not come from the reduction of the sphere to

the half-circle, and is not invariant under the action of SU(2). Also, the measure dθ
sin θ

, which
is the same (up to a sign) as the measure dx

(1−x2)
, after the change of variables x = cos θ is

performed, rather than being associated with a compact carrier space, the half-circle [0, π ] or
the closed interval [−1, 1], it is associated with a non-compact carrier space, (0, π) or (−1, 1).
In this way, only those associated Legendre functions which go to zero sufficiently fast at ±1
are normalizable.

Thus, this framework does not seem to be very well suited to accommodate any of the
unitary and irreducible representations of SU(2). Rather, we shall see in section 4 that
associated Legendre functions are best suited to describe certain finite-dimensional, non-
unitary, representations of SU(1, 1).

Equation (3) admits more solutions than the ones specified up to now. In fact, for arbitrary
complex numbers, j and m, it possess two kinds of solutions: the associated Legendre functions
of the first and second kind, P m

j (x) and Qm
j (x), respectively. The set of the second kind
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solutions is always divergent at x = ±1, and therefore non-normalizable, for integers j and
m, and that is the reason why they were not considered before.

For arbitrary j and m the relation (7) does not hold in general, and must be replaced by

P −m
j (x) = �(j − m + 1)

�(j + m + 1)

[
cos(mπ)P m

j (x) − 2

π
sin(mπ)Qm

j (x)

]
. (9)

If m is integer, the expression (7) is recovered, but in any other case there is a mixture among
functions of the first and second class.

Let us focus on the particular case of both j and m half-odd-integers (therefore j ± m are
integers). Then the relation (9) gives

P −m
j (x) = (−1)m+(1/2) 2

π

�(j − m + 1)

�(j + m + 1)
Qm

j (x), (10)

implying that first and second class solutions are the same, although now P m
j (x) and P −m

j (x)

are linearly independent.
With respect to the measure dx, which is the same (up to a sign) as the measure

sin θ dθ = d(cos θ) after the change of variables x = cos θ is performed, the associated
Legendre functions P m

j (x) are normalizable for m � 1
2 , but non-normalizable for m > 1

2 .
Furthermore, they are not orthogonal for the same j and different values of m, as happened
for the integer case.

Therefore, although in the case j and m half-integer there are 2j + 1 linearly independent
functions

{
P m

j (x)
}j

m=−j
, only j + 3

2 are normalizable,
{
P m

j (x)
}1/2

m=−j
, but they are not

orthogonal, so that they cannot carry a unitary irreducible representation of SU(2) by
themselves, not even when multiplying them by the phase factor eimφ , since some of the
states are non-normalizable. This is the reason why spherical harmonics are not well defined
for j half-odd-integer.

With respect to the measure dx
(1−x2)

(or dθ
sin θ

), only j + 1
2 states are normalizable,{

P m
j (x)

}−1/2
m=−j

, and these are orthogonal. We cannot conclude, however, that they carry a
unitary irreducible representation of SU(2), since there are exactly one half of the states, and
the measure dθ

sin θ
is not invariant under SU(2).

It should be stressed that similar conclusions can be drawn in the case in which j is an
arbitrary positive number, and m = −j,−j + 1, . . . . In this case, all the associated Legendre
functions

{
P m

j (x)
}∞

m=−j
are linearly independent, but only a few of them are normalizable.

For the particular case of the measure dx
(1−x2)

, only those with m < 0 are normalizable, and
these are orthogonal, satisfying the orthogonality relations (8) with the factorials substituted by
the appropriate Gamma functions. Thus, there are only [j ] + 1 independent and normalizable
states.

Note that since SU(2) is already simply connected, we cannot extend the range of
allowed values for the index j of its representations, and therefore the space of independent
and normalizable states obtained for j real cannot, by any means, support a representation
of SU(2).

3. Representations of SU (2) on the plane: associated Laguerre polynomials

Let us review the construction of the representations of SU(2) in polar coordinates in the plane
in terms of two commuting boson operators a and b. This is the Schwinger representation
of SU(2), having the form

J1 = 1
2 (a†a − b†b), J2 = 1

2 (a†b + b†a), J3 = −i 1
2 (a†b − b†a). (11)
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The total boson number operator N̂ = a†a + b†b commutes with all SU(2) generators, and
is related to the Casimir J 2 by J 2 = 1

4 N̂(N̂ + 2). Therefore, the spin index j of the SU(2)

representations is related to the total boson number N by N = 2j .
The boson operators can be realized in a two-dimensional harmonic oscillator space:

a = 1√
2

(
x +

∂

∂x

)
, a† = 1√

2

(
x − ∂

∂x

)
,

b = 1√
2

(
y +

∂

∂y

)
, b† = 1√

2

(
y − ∂

∂y

)
,

(12)

and performing the change to polar coordinates, x = r cos φ and y = r sin φ, the total boson
number operator and the third component of the SU(2) generators read

N̂ = 1

2

(
−1

r

∂

∂r
r

∂

∂r
− 1

r2

∂2

∂φ2
+ r2

)
− 1, J3 = − i

2

∂

∂φ
. (13)

The common eigenvectors to both operators can be written as

�m
j (r, φ) = e−2imφ Rm

j (r) (14)

where Rm
j (r) satisfies the equation

1

2

(
−1

r

∂

∂r
r

∂

∂r
+

4m2

r2
+ r2

)
Rm

j (r) = (2j + 1)Rm
j (r). (15)

The solutions to this equation are

Rm
j (r) = e−r2/2 r−2mL−2m

j+m (r2), (16)

where L−2m
j+m (r2) are the associated Laguerre polynomials. Using the change ρ = r2 and

defining n = j + m, the solutions are written as

Rn
j (ρ) = e−ρ/2 yj−nL2(j−n)

n (ρ). (17)

The integration measure is derived from the measure for the two oscillator system,
dx dy = r dr dφ = (1/2)ρ dρ dφ, and this is an invariant measure under SU(2). With this
measure, and for each j either integer or half-odd-integer, all the functions

{
�m

j (r, φ)
}j

m=−j

are normalizable and orthogonal to each other. Therefore, in this case, j can take any positive
integer or half-integer value, and m ranges from −j,−j + 1, . . . , j − 1, j . Therefore, n
takes the values 0, 1, . . . , 2j . Thus, all unitary and irreducible representations of SU(2) of
dimension 2j + 1 with j integer or half-odd-integer can be obtained in this way.

The normalized functions

�̄m
j (r, φ) =

√
(j + m)!

(j − m)!
�m

j (r, φ) (18)

satisfy relations similar to those verified by spherical harmonics (but also valid for j half-odd-
integer):

�̄m∗
j (r, φ) = �̄−m

j (r, φ), (19)

and these are derived from the corresponding properties of the associated Laguerre
polynomials:

ρmL2m
j−m(ρ) = (j + m)!

(j − m)!
ρ−mL−2m

j+m (ρ). (20)

Now we wonder whether a realization of the representations of SU(2) in terms of just
the variable r (or ρ) is possible or not. The answer is negative, as in the case of the sphere,
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and for the same reason. The orthogonality between different values of m of the complete
wavefunctions �m

j (r, φ) is provided by the integration in the φ variable, in such a way that the
functions Rm

j (r) are not orthogonal with respect to the measure r dr (or dρ). This, along with
the fact that some of the functions are linearly dependent according to equation (20), implies
that the carrier space would consist of just j + 1 for j integer or j + 1

2 for j half-odd-integer,
non-orthogonal (normalizable) independent states. And this set, of course, cannot support a
unitary irreducible representation of SU(2) since there are fewer states in the representation
space than it should and the operator J3 would not be self-adjoint.

Although the problem of the linear dependence of the states is unavoidable, the non-
orthogonality of the eigenstates of J3 can be circumvented by modifying the scalar product, as
in the case of the associated Legendre functions. The new integration measure is in this case
dr
r

= 1
2

dρ

ρ
, and with respect to this scalar product the (linearly independent) functions Rm

j (x)

(or Rn
j (ρ)) are orthogonal to each other for different values of m:∫ ∞

0
Rm

j (x)Rm′
j

dr

r
= δmm′

(j − m)!

2|m|(j + m)!
. (21)

Note that with this measure for j integer the state with m = 0 is not normalizable.
Unlike in the case of the associated Legendre functions, for half-odd-integer j the states

with m > 0 are normalizable, but they are now linearly dependent (see equation (20)), and
therefore the space of states has the same dimension as in the case of the associated Legendre
functions.

Similar to the case of the realization in terms of the associated Legendre functions, we
can extend the range of allowed values for j to any positive real number, obtaining the same
results. Although the functions Rm

j (r) are all linearly independent for m = −j,−j + 1, . . . ,

only those with m < 0 are normalizable with respect to the measure dr
r

. Therefore, there are
[j ] + 1 states in the space of normalizable states, and these are orthogonal to each other for
different values of m. In fact, expression (21) is valid in this case replacing the factorials with
the appropriate Gamma functions.

Summarizing, when we try to represent the group SU(2) in terms of a single variable,
many difficulties emerge, such as the reduction of the number of independent functions and
the non-orthogonality of eigenstates of the operator J3. A possible solution is the use of a
different scalar product which restores the orthogonality, but then some states become non-
normalizable. This difficulties prevent such a realization, and suggest us that no realization in
terms of a single variable exists for SU(2).

Despite the differences between associated Legendre functions and associated Laguerre
polynomials, the results presented here show that they have a very similar behaviour, and that,
suitably choosing the scalar product in each case, a space of independent and normalizable
functions can be found for the index j being integer, half-odd-integer or even real. In [1], one
of these sets of functions, expressed in terms of the relativistic Hermite polynomials, which are
related to the associated Legendre functions, was related to a non-unitary finite-dimensional
representation of SU(1, 1) ≈ SL(2, R). Using similar arguments, we can conclude that the
sets of associated Laguerre polynomials here considered can also be related to non-unitary
finite-dimensional representations of SU(1, 1).

4. The modified Pöschl–Teller potential

Let us apply the results of the previous sections to a pair of relevant quantum systems: the
modified Pöschl–Teller potential and the Morse potential.
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The modified Pöschl–Teller potential (MPT) is given by

V (x) = − D

cosh2(αx)
, (22)

where D > 0 is the depth of the potential and α is related to its range.
The normalized solutions of the Schrödinger equation with this potential can be written

as (see, for instance, [6])

�j
n(u) = Nj

n (1 − u2)
j−n

2 C
j−n+ 1

2
n (u), (23)

where u = tanh(αx), Cα
n (u) are the Gegenbauer polynomials and the normalization constant

is

Nj
n =

√
αn!�

(
j − n + 1

2

)
π1/2�(j − n)(2j − 2n + 1)n

(24)

where (a)n is the Pochhammer symbol. The index j is related to the potential parameters by

j (j + 1) = 2mD

α2h̄2 , (25)

and n takes the values n = 0, 1, . . . , [j ]. It labels the energy levels in the form

En = −h̄2α2

2m
(j − n)2. (26)

The scalar product used for the normalization of the states is given by the usual integration
measure dx, which renders the MPT Hamiltonian Hermitian. In terms of the variable
u = tanh(αx), the measure is given by du/(1 − u2).

In [1], the Schrödinger equation, as well as its solutions and the integration measure,
was derived from the Klein–Gordon-like equation associated with the discrete series
representations of SL(2, R) with negative Bargmann index k = −j . The solutions of this
equation were expressed in terms of relativistic Hermite polynomials (RHP) with negative
Bargmann index. These representations were identified with the finite-dimensional, non-
unitary, irreducible representations of SL(2, R). The non-unitarity of the representations
manifested itself in that only [j ] + 1 out of the 2j + 1 states of the representation space were
normalizable, and in that the ladder operators were not adjoint to each other. Restricting
the representation to the subspace of the normalized, physically meaningful states, a set of
non-local ladder operators, adjoint to each other, was obtained.

In [5], it was proved that through the change u = tanh(αx), the Schrödinger equation
for the MPT potential leads to the differential equation for the associated Legendre functions,
equation (3). Therefore, the solutions could be written in terms of the associated Legendre
functions. This is compatible with the solutions given in equation (23) since Gegenbauer
polynomials and associated Legendre functions are related, and also it is compatible with
the solutions given in [1] in terms of RHP with negative Bargmann index since they are also
related up to a constant:

P m
j (u) ≈ (1 − u2)

m
2 H

−j

j+m(u). (27)

According to section 2, and since the measure derived from the physical measure dx

is du
(1−u2)

(see equation (8)), and not du, we can conclude that the space of solutions (23)
does not support a unitary irreducible representation of SU(2), refuting the general claim that
this is the case [5]. Rather, as shown in [1], it carries a ‘unitary’, non-local realization of a
finite-dimensional, non-unitary, non-local irreducible representation of SU(1, 1).
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5. The Morse potential

The Morse potential has the form [3]

V (x) = D(e−2βx − 2e−βx), (28)

where D > 0 is the depth of the potential and β is related to the range of the potential.
The normalized solutions of the Schrödinger equation associated with this potential can

be written as (see, for instance, [3, 8])

�j
n(y) = Nj

n yj−n e−y/2 L2(j−n)
n (y), (29)

where y = (2j + 1) e−βx, Lα
n(y) are associated Laguerre polynomials, and the normalization

constant is

Nj
n =

√
2β(j − n)�(n + 1)

�(2j − n + 1)
. (30)

The index j is a positive number related to the potential parameters by

2j + 1 = 8mD

β2h̄2 , (31)

and n takes the values n = 0, 1, . . . , [j ]. It labels the energy levels in the form

En = −h̄2β2

2m
(j − n)2. (32)

The scalar product used for the normalization of the states is again given by the usual
integration measure dx, which renders the Morse Hamiltonian Hermitian. In terms of the
variable ρ = (2j + 1) e−βx , the measure is given by dρ

ρ
.

In [5], it was proved that after the change of variables r2 = (2j + 1) e−βx (note
that ρ = r2), the Schrödinger equation for the Morse potential transforms into the radial
equation (15) of the SU(2) representations on the plane.

According to section 3 and since the measure derived from the physical measure dx is
dρ

ρ
, and not 1

2ρ dρ, we can conclude that the space of solutions (29) does not support a unitary
irreducible representation of SU(2), refuting the claim of [5]. Similar to the MPT case, it
carries a ‘unitary’, non-local realization of a finite-dimensional, non-unitary representation of
SU(1, 1), as will be shown elsewhere.

6. Conclusions

The main conclusion that we can extract from the previous discussion is that a quantum system,
such as the modified Pöschl–Teller potential or the Morse potential, with a mixed spectrum
consisting of a continuum and a finite number of bound states, should be described by a
non-compact dynamical group (such as SU(1, 1) ≈ SL(2, R)) for both the continuum and
the discrete spectrum. The continuum spectrum is given in terms of the principal continuous
series of representations of SU(1, 1), whereas the discrete spectrum, with a finite number
of bound states, is given in terms of a new class of ‘unitary’, non-local realizations of the
finite-dimensional, non-unitary, representations of SU(1, 1).

It seems quite natural to conjecture that this result can be extrapolated to an arbitrary
potential V (x) with similar characteristics, i.e. with mixed spectrum consisting of a continuum
and a finite number of bound states. This kind of potentials, if solvable, will be described by
a non-compact dynamical group for both the continuum and the discrete spectra.
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